Tirrell Lab

The Science of Self-Assembly
The Tirrell laboratory has broad and deep expertise in creating novel, functional self-assembled structures focusing on tailored nanomaterials for basic science research and therapeutic applications. In many cases our work has involved the specific design of new molecular architectures that showcase the fundamentals of self-assembly.

The capacity to create a variety of new structures is useful in designing constructs for diagnostic and therapeutic applications where nanoparticles are able to target and home to asymptomatic and resistant pathologies. One such construct is the micellar structure formed by electrostatic complexation of ionic block copolymers, which can be an effective carrier vehicle for charged cargoes such as therapeutic drugs, proteins or nucleic acids. We also have expertise in peptide-based micellar constructs where the dense presentation of a functional peptide at the micelle surface improves the interaction of our nanomaterials with cells. We have used these strategies to great effect as antimicrobial treatments, for the detection and treatment of atherosclerosis and cancer, in regenerative medicines, and also vaccines.

We are poised to both continue the development of new nanomaterials and to drive the use of these constructs as rapidly as possible towards clinical applications. To this end, we work closely with scientific, technical, and clinical collaborators both at the University of Chicago and elsewhere.

 

Principal Investigator

Matthew Tirrell

mtirrell@uchicago.edu

Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities

Neitzel, A.E., Fang, Y.N., Yu, B., Rumyantsev, A.M., de Pablo, J.J. and Tirrell, M.V., 2021. Polyelectrolyte complex coacervation across a broad range of charge densities. Macromolecules, 54(14), pp.6878-6890.

Harnessing Peptide Binding to Capture and Reclaim Phosphate

Fowler, Whitney C., et al. "Harnessing Peptide Binding to Capture and Reclaim Phosphate." Journal of the American Chemical Society 143.11 (2021): 4440-4450. Whitney C. Fowler, Chuting Deng, Gabriella M. Griffen, Tess Teodoro, Ashley Z. Guo, Michal Zaiden, Moshe Gottlieb*, Juan J. de Pablo, Matthew V. Tirrell

Advances in the Structural Design of Polyelectrolyte Complex Micelles

Alexander E Marras, Jeffrey M Ting, Kaden C Stevens, Matthew V Tirrell. "Advances in the Structural Design of Polyelectrolyte Complex Micelles". The Journal of Physical Chemistry B, 2021

Complex coacervation of statistical polyelectrolytes: Role of monomer sequences and formation of inhomogeneous coacervates

Yu, B., Rumyantsev, A.M., Jackson, N.E., Liang, H., Ting, J.M., Meng, S., Tirrell, M.V. and de Pablo, J.J., 2021. Complex coacervation of statistical polyelectrolytes: role of monomer sequences and formation of inhomogeneous coacervates. Molecular Systems Design & Engineering.

Expanding the structural diversity of polyelectrolyte complexes and polyzwitterions

Angelika E Neitzel, Guilhem X De Hoe, Matthew V Tirrell. "Expanding the structural diversity of polyelectrolyte complexes and polyzwitterions", Current Opinion in Solid State and Materials Science, 2021.

Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport

Edward Barry, Raelyn Burns, Wei Chen, Guilhem X De Hoe, Joan Manuel Montes De Oca, Juan J de Pablo, James Dombrowski, Jeffrey W Elam, Alanna M Felts, Giulia Galli, John Hack, Qiming He, Xiang He, Eli Hoenig, Aysenur Iscen, Benjamin Kash, Harold H Kung, Nicholas HC Lewis, Chong Liu, Xinyou Ma, Anil Mane, Alex BF Martinson, Karen L Mulfort, Julia Murphy, Kristian Mølhave, Paul Nealey, Yijun Qiao, Vepa Rozyyev, George C Schatz, Steven J Sibener, Dmitri Talapin, David M Tiede, Matthew V Tirrell, Andrei Tokmakoff, Gregory A Voth, Zhongyang Wang, Zifan Ye, Murat Yesibolati, Nestor J Zaluzec, Seth B Darling. "Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport", Chemical Reviews, 2021.

Physical property scaling relationships for polyelectrolyte complex micelles

Alexander E Marras, Trinity R Campagna, Jeffrey R Vieregg, Matthew V Tirrell. "Physical property scaling relationships for polyelectrolyte complex micelles", Macromolecules, 2021.

Harnessing Peptide Binding to Capture and Reclaim Phosphate

Whitney C Fowler, Chuting Deng, Gabriella M Griffen, Tess Teodoro, Ashley Z Guo, Michal Zaiden, Moshe Gottlieb, Juan J de Pablo, Matthew V Tirrell. "Harnessing Peptide Binding to Capture and Reclaim Phosphate", Journal of the American Chemical Society, 2021.

Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes

Lu Li, Artem M Rumyantsev, Samanvaya Srivastava, Siqi Meng, Juan J de Pablo, Matthew V Tirrell. "Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes", Macromolecules, 2020.

Effect of solvent quality on the phase behaviors in polyelectrolyte complexation

Li, L., Rumyantsev, A.M., Srivastava, S., Meng, S., de Pablo, J.J. and Tirrell, M.V., 2020. Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes. Macromolecules, 54(1), pp.105-114.

View All Publications

Professor Juan J. de Pablo, Ph.D.

Professor Stuart Rowan, Ph.D.

Professor Yun Fang, Ph.D.

Professor James Labelle, M.D., Ph.D.