Tirrell Lab

The Science of Self-Assembly
The Tirrell laboratory has broad and deep expertise in creating novel, functional self-assembled structures focusing on tailored nanomaterials for basic science research and therapeutic applications. In many cases our work has involved the specific design of new molecular architectures that showcase the fundamentals of self-assembly.

The capacity to create a variety of new structures is useful in designing constructs for diagnostic and therapeutic applications where nanoparticles are able to target and home to asymptomatic and resistant pathologies. One such construct is the micellar structure formed by electrostatic complexation of ionic block copolymers, which can be an effective carrier vehicle for charged cargoes such as therapeutic drugs, proteins or nucleic acids. We also have expertise in peptide-based micellar constructs where the dense presentation of a functional peptide at the micelle surface improves the interaction of our nanomaterials with cells. We have used these strategies to great effect as antimicrobial treatments, for the detection and treatment of atherosclerosis and cancer, in regenerative medicines, and also vaccines.

We are poised to both continue the development of new nanomaterials and to drive the use of these constructs as rapidly as possible towards clinical applications. To this end, we work closely with scientific, technical, and clinical collaborators both at the University of Chicago and elsewhere.

 

Principal Investigator

Matthew Tirrell

mtirrell@uchicago.edu

Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities

Neitzel, A.E., Fang, Y.N., Yu, B., Rumyantsev, A.M., de Pablo, J.J. and Tirrell, M.V., 2021. Polyelectrolyte complex coacervation across a broad range of charge densities. Macromolecules, 54(14), pp.6878-6890.

Harnessing Peptide Binding to Capture and Reclaim Phosphate

Fowler, Whitney C., et al. "Harnessing Peptide Binding to Capture and Reclaim Phosphate." Journal of the American Chemical Society 143.11 (2021): 4440-4450. Whitney C. Fowler, Chuting Deng, Gabriella M. Griffen, Tess Teodoro, Ashley Z. Guo, Michal Zaiden, Moshe Gottlieb*, Juan J. de Pablo, Matthew V. Tirrell

Complex coacervation of statistical polyelectrolytes: Role of monomer sequences and formation of inhomogeneous coacervates

Yu, B., Rumyantsev, A.M., Jackson, N.E., Liang, H., Ting, J.M., Meng, S., Tirrell, M.V. and de Pablo, J.J., 2021. Complex coacervation of statistical polyelectrolytes: role of monomer sequences and formation of inhomogeneous coacervates. Molecular Systems Design & Engineering.

Effect of solvent quality on the phase behaviors in polyelectrolyte complexation

Li, L., Rumyantsev, A.M., Srivastava, S., Meng, S., de Pablo, J.J. and Tirrell, M.V., 2020. Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes. Macromolecules, 54(1), pp.105-114.

Spatiotemporal Formation and Growth Kinetics of Polyelectrolyte Complex Micelles with Millisecond Resolution

Wu, Hao, Jeffrey M. Ting, Boyuan Yu, Nicholas E. Jackson, Siqi Meng, Juan J. de Pablo, and Matthew V. Tirrell. "Spatiotemporal Formation and Growth Kinetics of Polyelectrolyte Complex Micelles with Millisecond Resolution." ACS Macro Letters 9, no. 11 (2020): 1674-1680.

Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates

Fares, Hadi M., Alexander E. Marras, Jeffrey M. Ting, Matthew V. Tirrell, and Christine D. Keating. "Impact of Wet-Dry Cycling on the Phase Behavior and Compartmentalization Properties of Complex Coacervates." (2020).

Probing Diffuse Polymer Brush Interfaces Using Resonant Soft X-ray Scattering

De Hoe, Guilhem X., Jun Mao, Zhang Jiang, Seth B. Darling, Matthew V. Tirrell, and Wei Chen. "Probing Diffuse Polymer Brush Interfaces Using Resonant Soft X-ray Scattering." Synchrotron Radiation News 33, no. 4 (2020): 24-30.

Structure, Morphology, and Rheology of Polyelectrolyte Complex Hydrogels Formed by Self-Assembly of Oppositely Charged Triblock Polyelectrolytes

Srivastava, Samanvaya, Adam E. Levi, David J. Goldfeld, and Matthew V. Tirrell. "Structure, morphology, and rheology of polyelectrolyte complex hydrogels formed by self-assembly of oppositely charged triblock polyelectrolytes." Macromolecules 53, no. 14 (2020): 5763-5774. Harvard

Comparing Zwitterionic and PEG Exteriors of Polyelectrolyte Complex Micelles

Ting, Jeffrey M., Alexander E. Marras, Joseph D. Mitchell, Trinity R. Campagna, and Matthew V. Tirrell. "Comparing Zwitterionic and PEG Exteriors of Polyelectrolyte Complex Micelles." Molecules 25, no. 11 (2020): 2553.

View All Publications

Professor Juan J. de Pablo, Ph.D.

Professor Stuart Rowan, Ph.D.

Professor Yun Fang, Ph.D.

Professor James Labelle, M.D., Ph.D.