Juan de Pablo

  • Liew Family Professor of Molecular Engineering
  • Research and Scholarly Interests: Protein Folding, Protein Aggregation, DNA Folding and Hybridization, Glassy Materials, Block Copolymers, Liquid Crystals, Development of Advanced Sampling Methods
  • Websites: de Pablo Group
  • Contact: depablo@uchicago.edu
  • Assistant: Lisa Vonesh
  • Office Location:
    Eckhardt Research Center
    Room 231
    5640 South Ellis Avenue
    Chicago, IL 60637

Much of Juan de Pablo’s work entails conducting supercomputer simulations to understand and design new materials from scratch and to find applications for them.

He is a leader of simulations of polymeric materials, including DNA dynamics — how DNA molecules arrange and organize themselves and interact with other DNA molecules. He also studies protein aggregation and its poorly understood relationship to various diseases, including type II diabetes and neurodegenerative disorders.

Prof. de Pablo joined the University of Wisconsin faculty in 1992 and served as the Howard Curler Distinguished Professor and Hilldale Professor of Chemical Engineering. He holds over 20 patents on multiple technologies, including nine jointly with PME Brady W. Dougan Professor of Molecular Engineering Paul Nealey and others, and is the author or co-author of approximately 500 publications.

The International Technology Roadmap for Semiconductors has identified one of de Pablo and Nealey’s collaborative inventions for directed self-assembly as a technology critical to the semiconductor industry’s miniaturization goals. Directed self-assembly provides engineers a means of coaxing organic materials to form patterns that direct the deposition of metals on integrated circuits.

A food manufacturer has licensed another of de Pablo’s patents for stabilizing proteins in bacteria or cells for long periods of time without refrigeration, but the patent also has potential pharmaceutical and medical applications. A fellow of the American Academy of Arts and Sciences and of the American Physical Society, de Pablo also has received the 2011 Charles Stine Award from the American Institute of Chemical Engineers, the DuPont Medal for Excellence in Nutrition and Health Sciences in 2016, and the Intel Patterning Science Award in 2015. He currently chairs the Mathematical and Physical Sciences Advisory Committee of the National Science Foundation, and the Committee on Condensed Matter and Materials Research at the National Research Council. He is the founding editor of Molecular Systems Design and Engineering, and co-director of the new Center for Hierarchical Materials Design.

In 2016, de Pablo was inducted into the National Academy of Engineering (NAE) for “design of macromolecular products and processes via scientific computation.” 

de Pablo earned a bachelor’s degree in chemical engineering from Universidad Nacional Autónoma de México in 1985. After completing his doctorate in chemical engineering from the University of California, Berkeley, in 1990, he conducted postdoctoral research at the Swiss Federal Institute of Technology in Zurich, Switzerland.

Sequence blockiness controls the structure of polyampholyte necklaces
Rumyantsev, A.M., Johner, A. and de Pablo, J.J., 2021. Sequence Blockiness Controls the Structure of Polyampholyte Necklaces. ACS macro letters, 10, pp.1048-1054.

Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities
Neitzel, A.E., Fang, Y.N., Yu, B., Rumyantsev, A.M., de Pablo, J.J. and Tirrell, M.V., 2021. Polyelectrolyte complex coacervation across a broad range of charge densities. Macromolecules, 54(14), pp.6878-6890.

Scaling theory of neutral sequence-specific polyampholytes
Rumyantsev, A.M., Jackson, N.E., Johner, A. and De Pablo, J.J., 2021. Scaling Theory of Neutral Sequence-Specific Polyampholytes. Macromolecules, 54(7), pp.3232-3246.

Harnessing Peptide Binding to Capture and Reclaim Phosphate
Fowler, Whitney C., et al. "Harnessing Peptide Binding to Capture and Reclaim Phosphate." Journal of the American Chemical Society 143.11 (2021): 4440-4450. Whitney C. Fowler, Chuting Deng, Gabriella M. Griffen, Tess Teodoro, Ashley Z. Guo, Michal Zaiden, Moshe Gottlieb*, Juan J. de Pablo, Matthew V. Tirrell

Role of Molecular Architecture on Ion Transport in Ethylene oxide-Based Polymer Electrolytes
Deng, Chuting, et al. "Role of Molecular Architecture on Ion Transport in Ethylene oxide-Based Polymer Electrolytes." Macromolecules 54.5 (2021): 2266-2276. Chuting Deng, Michael A. Webb, Peter Bennington, Daniel Sharon, Paul F. Nealey, Shrayesh N. Patel, Juan J. de Pablo

Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes
Bennington, Peter, et al. "Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes." Journal of Materials Chemistry A 9.15 (2021): 9937-9951. Peter Bennington, Chuting Deng, Daniel Sharon, Michael A. Webb, Juan J. de Pablo, Paul F. Nealey, Shrayesh N. Patel

Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase
Byléhn, F., Menéndez, C.A., Perez-Lemus, G.R., Alvarado, W. and De Pablo, J.J., 2021. Modeling the binding mechanism of remdesivir, favilavir, and ribavirin to SARS-CoV-2 RNA-dependent RNA polymerase. ACS central science, 7(1), pp.164-174.

Polyelectrolyte complex coacervates: Recent developments and new frontiers
Rumyantsev, A.M., Jackson, N.E. and De Pablo, J.J., 2021. Polyelectrolyte Complex Coacervates: Recent Developments and New Frontiers. Annual Review of Condensed Matter Physics, 12, pp.155-176.

Harnessing Peptide Binding to Capture and Reclaim Phosphate
Whitney C Fowler, Chuting Deng, Gabriella M Griffen, Tess Teodoro, Ashley Z Guo, Michal Zaiden, Moshe Gottlieb, Juan J de Pablo, Matthew V Tirrell. "Harnessing Peptide Binding to Capture and Reclaim Phosphate", Journal of the American Chemical Society, 2021.

Molecular mass dependence of interfacial tension in complex coacervation
Audus, D.J., Ali, S., Rumyantsev, A.M., Ma, Y., de Pablo, J.J. and Prabhu, V.M., 2021. Molecular Mass Dependence of Interfacial Tension in Complex Coacervation. Physical Review Letters, 126(23), p.237801.

View All Publications