F. Joseph Heremans
Awschalom Group

F. Joseph Heremans

  • Staff scientist, Argonne National Laboratory;
    UChicago CASE scientist

  • Websites: Argonne Lab profile
  • Contact: jheremans@uchicago.edu
  • Office Location:
    Eckhardt Research Center 243
    5640 South Ellis Avenue
    Chicago, IL 60637

Heremans' current research focuses on engineering with diamond, including spin dynamics of nitrogen-vacancy (NV) centers, as well as transport properties. NV centers are known to have long spin coherence times at room temperature, making them an ideal candidate for quantum information processing.

Parasitic erbium photoluminescence in commercial telecom fiber optical components

G. Wolfowicz, F. J. Heremans, D. D. Awschalom. Parasitic erbium photoluminescence in commercial telecom fiber optical components. Opt. Lett. 2021. Vol. 46. 10.1364/OL.437417.

Tunable and Transferable Diamond Membranes for Integrated Quantum Technologies

X. Guo, N. Delegan, J. C. Karsch, Z. Li, T. Liu, R. Shreiner, A. Butcher, D. D. Awschalom, F. J. Heremans, A. A. High. Tunable and Transferable Diamond Membranes for Integrated Quantum Technologies. 2021. arXiv. 2109.11507.

Relaxation of a single defect spin by the low-frequency gyrotropic mode of a magnetic vortex

J. Trimble, B. Gould, F. J. Heremans, S. S.-L. Zhang, D. D. Awschalom, J. Berezovsky. Relaxation of a single defect spin by the low-frequency gyrotropic mode of a magnetic vortex. J. Appl. Phys. 2021. Vol. 130. 10.1063/5.0055595.

Photoluminescence spectra of point defects in semiconductors: Validation of first-principles calculations

Y. Jin, M. Govoni, G. Wolfowicz, S. E. Sullivan, F. J. Heremans, D. D. Awschalom, G. Galli. Photoluminescence spectra of point defects in semiconductors: Validation of first-principles calculations. Phys. Rev. Materials. 2021. Vol. 5. 10.1103/PhysRevMaterials.5.084603.

Quantum guidelines for solid-state spin defects

G. Wolfowicz, F. J. Heremans, C. P. Anderson, S. Kanai, H. Seo, A. Gali, G. Galli, D. D. Awschalom. Quantum guidelines for solid-state spin defects. Nat Rev Mater. 2021. Vol. 6. 10.1038/s41578-021-00306-y.

Quantum engineering with hybrid magnonics systems and materials

D. D. Awschalom, C. H. R. Du, R. He, F. J. Heremans, A. Hoffmann, J. T. Hou, H. Kurebayashi, Y. Li, L. Liu, V. Novosad, J. Sklenar, S. E. Sullivan, D. Sun, H. Tang, V. Tiberkevich, C. Trevillian, A. W. Tsen, L. R. Weiss, W. Zhang, X. Zhang, L. Zhao, C. W. Zollitsch. Quantum engineering with hybrid magnonics systems and materials. 2021. IEEE Transactions on Quantum Engineering. Vol. 2. 10.1109/TQE.2021.3057799.

Generalized scaling of spin qubit coherence in over 12,000 host materials

S. Kanai, F. J.Heremans, H. Seo, G. Wolfowicz, C. P. Anderson, S. E. Sullivan, G. Galli, D. D. Awschalom, H. Ohno. Generalized scaling of spin qubit coherence in over 12,000 host materials. arXiv. 2021. 2102.02986.

High-Q Nanophotonic Resonators on Diamond Membranes using Templated Atomic Layer Deposition of TiO2

A. Butcher, X. Guo, R. Shreiner, N. Delegan, K. Hao, P. J. Duda III, D. D. Awschalom, F. J. Heremans, A. A. High. High-Q Nanophotonic Resonators on Diamond Membranes using Templated Atomic Layer Deposition of TiO2. ACS Nano Lett. Vol. 20. Pp. 4609. 10.1021/acs.nanolett.0c01467.

Vanadium spin qubits as telecom quantum emitters in silicon carbide

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, D. D. Awschalom. Vanadium spin qubits as telecom quantum emitters in silicon carbide. Science Advances. 2020. eaaz1192.

General approaches for shear-correcting coordinate transformations in Bragg coherent diffraction imaging. Part I

S. Maddali, P. Li, A. Pateras, D. Timbie, N. Delegan, A. L. Crook, H. Lee, I. Calvo-Almazan, D. Sheyfer, W. Cha, F. J. Heremans, D. D. Awschalom, V. Chamard, M. Allain, S. O. Hruszkewycz. General approaches for shear-correcting coordinate transformations in Bragg coherent diffraction imaging. J. Appl. Cryst. 2020. Vol. 53. 10.1107/S1600576720001363.

View All Publications