Junhong Chen Research Group

Haihui Pu

  • Staff Scientist

  • Research topics: Materials Systems for Sustainability and Health
  • Contact: haihuipu@UCHICAGO.EDU

Haihui received his Ph.D. from the University of Wisconsin Milwaukee in 2015. Before joining the University of Chicago, he completed a Postdoctoral Appointment at UW Milwaukee and worked as a Sensor Scientist for NanoAffix Science, LLC. Haihui received his M.S. at Fudan University and his B.S. at Nanjing University of Science and Technology in China.

 

Haihui's research focuses on the first principles/molecular dynamics simulations and statistical thermodynamics modelings on the novel two dimensional nanomaterials for environment and energy applications. These include the field effect transistor nanosensors for detecting various targets of interest (e.g., gases, heavy metal ions, bacteria, proteins, and viruses), and energy storage devices (e.g., electrochemical fuel cells and batteries). 

Semi-quantitative Design of Black Phosphorous Field-Effect Transistor Sensors for Heavy Metal Ion Detection in Aqueous Media

J. B. Chang, H. H. Pu, S. A. Wells, K. Y. Shi, X. R. Guo, G. H. Zhou, X. Y. Sui, R. Ren, S. Mao, Y. T. Chen, M. C. Hersam, and J. H. Chen, Semi-quantitative Design of Black Phosphorous Field-Effect Transistor Sensors for Heavy Metal Ion Detection in Aqueous Media, Molecular Systems Design & Engineering, 4 (3), 491-502, DOI: 10.1039/c8me00056e, 2019.

Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors

X. Y. Chen, Y. Liu, X. Fang, Z. Li, H. H. Pu, J. B. Chang, J. H. Chen, and S. Mao. Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors, Biosens Bioelectron. 2019, 126, 664-671.

In operando impedance spectroscopic analysis on NiO-WO3 nanorod hetero-junction composites random networks for room temperature H2S detection

Y. L. Wang, A. Maity, X. Y. Sui, H. H. Pu, S. Mao, and J. H. Chen. In operando impedance spectroscopic analysis on NiO-WO3 nanorod hetero-junction composites random networks for room temperature H2S detection, ACS Omega. 2018, 3(12), 18685-18693.

Electronic Resonance-Frequency Modulation for Rapid, Point-of-Care Ebola-Glycoprotein Diagnosis with a Graphene-Based Field-Effect Biotransistor

A. Maity, X. Y. Sui, B. Jing, K. J. Bottum, X. K. Huang, J. B. Chang, G. H. Zhou, G. H. Lu, and J. H. Chen, Electronic Resonance Frequency Modulation for Rapid Point-of-care Ebola Glycoprotein Diagnosis with a Graphene-based Field-effect Bio-transistor, Anal. Chem., 90(24), 14230-14238, DOI: 10.1021/acs.analchem.8b03226, 2018.

Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors

X. Y. Chen, H. H. Pu, Z. P. Fu, X. Y. Sui, J. B. Chang, J. H. Chen and S. Mao. Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors, Environ. Sci. : Nano., 2018, 5, 1990-1999.

Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device

B. Thakur, G. H. Zhou, J. B. Chang, H. H. Pu, B. Jin, X. C. Yuan, C. H. Yang, and J. H. Chen. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device, Biosens. Bioelectron., 2018, 110, 16-22.

Two-dimensional nanomaterial-based field-effect transistor for chemical and biological sensing

S. Mao, J. B. Chang, H. H. Pu, G. H. Lu, Q. Y. He, H. Zhang, and J. H. Chen, Two-dimensional nanomaterial-based field-effect transistor for chemical and biological sensing, Chem. Soc. Rev. 46, 6872-6904, DOI: 10.1039/C6CS00827E, 2017.

Ultrasensitive Sensitivity and Layer-dependent Sensing Performance of Phosphorene-based Gas Sensors

S. M. Cui, H. H. Pu, S. A. Wells, Z. H. Wen, S. Mao, J. B. Chang, M. C. Hersam, and J. H. Chen. Ultrasensitive Sensitivity and Layer-dependent Sensing Performance of Phosphorene-based Gas Sensors, Nat. Commun., 6, 8632, DOI: 10.1038/ncomms9632, 2015.