Faculty

Alex High

  • Assistant Professor of Molecular Engineering in the UChicago Pritzker School of Molecular Engineering
  • Research and Scholarly Interests: 2D Semiconductors, Spin Qubits in Diamond, Precision Fabrication, Nanophotonics, Plasmonics
  • Websites: High Lab
  • Contact: ahigh@uchicago.edu
    773.834.0932
  • Assistant: Keturah Mitchell-McCall
  • Office Location:
    Eckhardt Research Center, ERC 207, 5640 South Ellis Avenue, Chicago, IL 60637

Alex High is an assistant professor of molecular engineering at the University of Chicago’s Pritzker School of Molecular Engineering (PME). He studies quantum and optical science and explores new physics and technologies that emerge when quantum systems are engineered at the nanoscale level.

Professor High’s lab explores new methods to craft interactions between photons and solid-state systems. By doing so, the High lab seeks fundamentally modify materials, for instance by breaking time-reversal symmetry or inducing long range coherence, and create deterministic, coherent interactions between single photons and quantum states. He received his BA in physics from the University of Pennsylvania and his PhD in physics from the University of California, San Diego.

High Lab studies optical and quantum science in solid-state systems. We explore new physics and applications that emerge when optical systems are controlled at a nanoscale level. We are developing optical quantum circuits and realizing new technologies based on engineered light/matter interactions.

Positions available! Contact ahigh@uchicago.edu

Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure
X. Guo, A. M. Stramma, Z. Li, W. G. Roth, B. Huang, Y. Jin, R. A. Parker, J. A. Martínez, N. Shofer, C. P. Michaels, C. P. Purser, M. H. Appel, E. M. Alexeev, T. Liu, A. C. Ferrari, D. D. Awschalom, N. Delegan, B. Pingault, G. Galli, F. J. Heremans, M. Atatüre, A. A. High. Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure. 2023. Phys. Rev. X 13, 041037. 10.1103/PhysRevX.13.041037

Microwave-based quantum control and coherence protection of tin-vacancy spin qubits in a strain-tuned diamond membrane heterostructure
X. Guo, A. M. Stramma, Z. Li, W. G. Roth, B. Huang, Y. Jin, R. A. Parker, J. A. Martínez, N. Shofer, C. P. Michaels, C. P. Purser, M. H. Appel, E. M. Alexeev, T. Liu, A. C. Ferrari, D. D. Awschalom, N. Delegan, B. Pingault, G. Galli, F. J. Heremans, M. Atatüre, A. A. High. Microwave-based quantum control and coherence protection of tin-vacancy spin qubits in a strain-tuned diamond membrane heterostructure. 2023. arXiv:2307.11916.

Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies
X. Guo, M. Xie, A. Addhya, A. Linder, U. Zvi, T. D. Deshmukh, Y. Liu, I. N. Hammock, Z. Li, C. T. DeVault, A. Butcher, A. P. Esser-Kahn, D. D. Awschalom, N. Delegan, P. C. Maurer, F. J. Heremans, A. A. High. Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies. 2023. arXiv:2306.04408.

Tunable and Transferable Diamond Membranes for Integrated Quantum Technologies
X. Guo, N. Delegan, J. C. Karsch, Z. Li, T. Liu, R. Shreiner, A. Butcher, D. D. Awschalom, F. J. Heremans, A. A. High. Tunable and Transferable Diamond Membranes for Integrated Quantum Technologies. 2021. Nano. Lett. 10.1021/acs.nanolett.1c03703.

High-Q Nanophotonic Resonators on Diamond Membranes using Templated Atomic Layer Deposition of TiO2
A. Butcher, X. Guo, R. Shreiner, N. Delegan, K. Hao, P. J. Duda III, D. D. Awschalom, F. J. Heremans, A. A. High. High-Q Nanophotonic Resonators on Diamond Membranes using Templated Atomic Layer Deposition of TiO2. ACS Nano Lett. Vol. 20. Pp. 4609. 10.1021/acs.nanolett.0c01467.