Faculty

David Awschalom

  • Liew Family Professor of Molecular Engineering and Vice Dean for Research and Infrastructure
  • Research and Scholarly Interests: Spintronics, Solid-State Quantum Information Processing, Magnetic Semiconductors, Nanomagnetism, Magneto-Optical Spectroscopy
  • Websites: Awschalom Group
  • Contact: awsch@uchicago.edu
    773.702.7746
  • Assistant: Mary Pat McCullough
  • Office Location:
    Eckhardt Research Center
    Room 237
    5640 South Ellis Avenue
    Chicago, IL 60637

David Awschalom is the Liew Family Professor and Vice Dean for Research of the Pritzker School for Molecular Engineering at the University of Chicago, a Senior Scientist at Argonne National Laboratory, and Founding Director of the Chicago Quantum Exchange. He is also the inaugural Director of Q-NEXT, one of the US DOE Quantum Information Science Research Centers. He works in the fields of spintronics and quantum information engineering, exploring and controlling the spins of electrons, nuclei, and photons in semiconductors and molecules. His research includes implementations of information processing with potential applications in quantum computing, communication, and sensing. 

Professor Awschalom received his BSc in physics from the University of Illinois at Urbana-Champaign, and his PhD in experimental physics from Cornell University. He was a research staff member and manager of the Nonequilibrium Physics Department at the IBM Watson Research Center in Yorktown Heights, New York. In 1991 he joined the University of California-Santa Barbara as a professor of physics, and in 2001 was additionally appointed as a professor of electrical and computer engineering. Prior to joining PME, he served as the Peter J. Clarke Professor and Director of the California NanoSystems Institute, and director of the Center for Spintronics and Quantum Computation.

Professor Awschalom received the American Physical Society Oliver Buckley Prize and Julius Edgar Lilienfeld Prize, the European Physical Society Europhysics Prize, the Materials Research Society David Turnbull Award and Outstanding Investigator Prize, the AAAS Newcomb Cleveland Prize, the International Magnetism Prize from the International Union of Pure and Applied Physics, and an IBM Outstanding Innovation Award. He is a member of the American Academy of Arts & Sciences, the National Academy of Sciences, the National Academy of Engineering, and the European Academy of Sciences.

Awschalom Group explores optical and magnetic interactions in semiconductor quantum structures, spin dynamics and coherence in condensed matter systems, macroscopic quantum phenomena in nanometer-scale magnets, and implementations of quantum information processing in the solid state. He developed a variety of femtosecond-resolved spatiotemporal spectroscopies and micromagnetic sensing techniques aimed at exploring charge and spin motion in the quantum domain. These measurements resulted in the discovery of robust electron spin coherence, transport of coherent states, and the spin Hall effect in semiconductors.

Tunable Cr4+ molecular color centers
D. W. Laorenza, A. Kairalapova, S. L. Bayliss, T. Goldzak, S. M. Greene, L. R. Weiss, P. Deb, P. J. Mintun, K. A. Collins, D. D. Awschalom, T. C. Berkelbach, D. E. Freedman. Tunable Cr4+ molecular color centers. J. Am. Chem. Soc. 2021. 10.1021/jacs.1c10145.

Parasitic erbium photoluminescence in commercial telecom fiber optical components
G. Wolfowicz, F. J. Heremans, D. D. Awschalom. Parasitic erbium photoluminescence in commercial telecom fiber optical components. Opt. Lett. 2021. Vol. 46. 10.1364/OL.437417.

Tunable and Transferable Diamond Membranes for Integrated Quantum Technologies
X. Guo, N. Delegan, J. C. Karsch, Z. Li, T. Liu, R. Shreiner, A. Butcher, D. D. Awschalom, F. J. Heremans, A. A. High. Tunable and Transferable Diamond Membranes for Integrated Quantum Technologies. 2021. arXiv. 2109.11507.

Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling
M. Fukami, D. R. Candido, D. D. Awschalom, M. E. Flatté. Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling. PRX Quantum. 2021. Vol. 2. 10.1103/PRXQuantum.2.040314.

Relaxation of a single defect spin by the low-frequency gyrotropic mode of a magnetic vortex
J. Trimble, B. Gould, F. J. Heremans, S. S.-L. Zhang, D. D. Awschalom, J. Berezovsky. Relaxation of a single defect spin by the low-frequency gyrotropic mode of a magnetic vortex. J. Appl. Phys. 2021. Vol. 130. 10.1063/5.0055595.

Photoluminescence spectra of point defects in semiconductors: Validation of first-principles calculations
Y. Jin, M. Govoni, G. Wolfowicz, S. E. Sullivan, F. J. Heremans, D. D. Awschalom, G. Galli. Photoluminescence spectra of point defects in semiconductors: Validation of first-principles calculations. Phys. Rev. Materials. 2021. Vol. 5. 10.1103/PhysRevMaterials.5.084603.

Achieving a quantum smart workforce
C. D. Aiello, D. D. Awschalom, H. Bernien, T. Brower, K. R. Brown, T. A. Brun, J. R.Caram, E. Chitambar, R. Di Felice, K. M. Edmonds, M. F. J. Fox, S. Haas, A. W. Holleitner, E. R. Hudson, J. H. Hunt, R. Joynt, S. Koziol, M. Larsen, H. J. Lewandowski, D. T. McClure, J. Palsberg, G. Passante, K. L. Pudenz, C. J. K. Richardson, J. L. Rosenberg, R. S. Ross, M. Saffman, M. Singh, D. W. Steuerman, C. Stark, J. Thijssen, A. N. Vamivakas, J. D. Whitfield, B. M. Zwickl. Achieving a quantum smart workforce. Quantum Science and Technology. 2021. Vol. 6. 10.1088/2058-9565/abfa64.

Quantum guidelines for solid-state spin defects
G. Wolfowicz, F. J. Heremans, C. P. Anderson, S. Kanai, H. Seo, A. Gali, G. Galli, D. D. Awschalom. Quantum guidelines for solid-state spin defects. Nat Rev Mater. 2021. Vol. 6. 10.1038/s41578-021-00306-y.

Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies
D. D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, et al. Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. PRX Quantum. 2021. Vol. 2. 10.1103/PRXQuantum.2.017002.

Quantum engineering with hybrid magnonics systems and materials
D. D. Awschalom, C. H. R. Du, R. He, F. J. Heremans, A. Hoffmann, J. T. Hou, H. Kurebayashi, Y. Li, L. Liu, V. Novosad, J. Sklenar, S. E. Sullivan, D. Sun, H. Tang, V. Tiberkevich, C. Trevillian, A. W. Tsen, L. R. Weiss, W. Zhang, X. Zhang, L. Zhao, C. W. Zollitsch. Quantum engineering with hybrid magnonics systems and materials. 2021. IEEE Transactions on Quantum Engineering. Vol. 2. 10.1109/TQE.2021.3057799.

View All Publications