“Our mission is to find new ways of looking at challenges that have a profound effect on humanity and quality of life.”

Matthew Tirrell
Dean, Pritzker School of Molecular Engineering

pme.uchicago.edu
Master of Engineering

The Master of Engineering (MEng) program at UChicago’s Pritzker School of Molecular Engineering is designed to enhance your career path as an engineer, and to prepare you for leadership positions in both entrepreneurship and in established industries. Students take technical courses specific to an area of interest, but every student shares a series of professional courses with the entire MEng cohort. Together, students learn how to effectively communicate in professional contexts and how to build and maintain high-performance teams.

Networking at PME goes beyond the classroom—you’ll engage directly with industry leaders throughout the program. You’ll also benefit from PME’s relationships with industrial partners and connections throughout the greater Chicago area as you pursue internships and employment opportunities. The campus has a rich ecosystem of intellectual and industry leadership, from the Booth School of Business to the Polsky Center for Entrepreneurship and Innovation, and an integral partnership with Argonne National Laboratory.

Expand your network

Networking at PME goes beyond the classroom—you’ll engage directly with industry leaders throughout the program. You’ll also benefit from PME’s relationships with industrial partners and connections throughout the greater Chicago area as you pursue internships and employment opportunities. The campus has a rich ecosystem of intellectual and industry leadership, from the Booth School of Business to the Polsky Center for Entrepreneurship and Innovation, and an integral partnership with Argonne National Laboratory.

Advance your potential

When you pursue the Master of Engineering at PME, you’re part of a network that reaches across the University of Chicago and beyond, both academically and professionally. The campus has a rich ecosystem of intellectual and industry leadership, from the Booth School of Business to the Polsky Center for Entrepreneurship and Innovation, and an integral partnership with Argonne National Laboratory.

Meeting the health care needs of a growing and aging population is an engineering problem, demanding significant breakthroughs in fundamental challenges to health and welfare. In this track, explore the chemistry of polymers and biological molecules, the properties of biological and bioactive materials, and medicine. You will learn the tools to understand, manipulate, stimulate, and eventually control immune molecules and cells, and to treat a broad range of health conditions, including cancer, infection, and autoimmunity. With the practical laboratory skills you’ll acquire in the experimental bioscience laboratory, you’ll be able to apply these broad principles to clinical problems.

This track suits candidates interested in: medicine, the biomedical and pharmaceutical industries, biomaterials, immunology, tissue engineering, and cancer research.

Master of Engineering Tracks

Bio- and Immunoengineering track

Meeting the health care needs of a growing and aging population is an engineering problem, demanding significant breakthroughs in fundamental challenges to health and welfare. In this track, explore the chemistry of polymers and biological molecules, the properties of biological and bioactive materials, and medicine. You will learn the tools to understand, manipulate, stimulate, and eventually control immune molecules and cells, and to treat a broad range of health conditions, including cancer, infection, and autoimmunity. With the practical laboratory skills you’ll acquire in the experimental bioscience laboratory, you’ll be able to apply these broad principles to clinical problems.

This track suits candidates interested in: medicine, the biomedical and pharmaceutical industries, biomaterials, immunology, tissue engineering, and cancer research.

Materials for Sustainability and Health track

Creating materials that are sustainable, environmentally friendly, or specifically designed to meet a therapeutic need can have a significant positive impact on the world.

In this track, you will develop conceptions of the structure, properties, and macromolecular scale of materials that address human needs; and how to deal with complex and ambiguous situations, systems, and personalities, and to navigate them responsibly and constructively. Most importantly, you’ll learn how to lead and innovate responsibly and successfully, preparing you for an accomplished career in engineering.

Computational Modeling of Materials track

To understand, evaluate, and design materials often requires leading computational techniques. In this track, you will develop a series of computational methods to prepare for multiscale material modeling, and both classical and quantum simulation.

This track suits candidates interested in: a career or advanced studies in molecular engineering, materials science, chemical engineering, applied physics, polymer science, and allied fields.

Engineer your future. Apply now.

Visit pme.uchicago.edu/apply
to apply.

Have questions? Connect with our Dean of Students Office by emailing applypmemasters@uchicago.edu or calling 773.834.6476.