Publications

  • Galli Group
    Dielectric-dependent hybrid functionals for heterogeneous materials,” Huihuo Zheng, Marco Govoni and Giulia Galli. Phys. Rev. Mat., 3, 073803, 2019

  • Galli Group
    Modelling Superlattices of Dipolar and Polarizable Semiconducting Nanoparticles,” Sergio Mazzotti, Federico Giberti and Giulia Galli. Nano Letters, 19, 3912-3917, 2019

  • Galli Group
    Computational prediction of lattice thermal conductivity: A comparison of molecular dynamics and Boltzmann transport approaches,” Marcello Puligheddu, Yi Xia, Maria Chan and Giulia Galli . Phys. Rev. Mat., 3, 085401, 2019

  • Galli Group
    Finite-field approach to solving the Bethe-Salpeter equation,” Ngoc Linh Nguyen, He Ma, Marco Govoni, Francois Gygi and Giulia Galli. Phys. Rev. Lett., 122, 237402, 2019

  • de Pablo Group, Tirrell Group
    “Controlling Complex Coacervation via Random Polyelectrolyte Sequences,” Artem M. Rumyantsev, Nicholas E. Jackson, Boyuan Yu, Jeffrey M. Ting, Wei Chen, Matthew V. Tirrell, and Juan J. de Pablo. ACS Macro Letters, 8, 1296-1302, 2019

  • de Pablo Group
    “Liquid Crystalline and Isotropic Coacervates of Semiflexible Polyanions and Flexible Polycations,” Artem M. Rumyantsev and Juan J. de Pablo. Macromolecules, 52, 5140-5156, 2019

  • Junhong Chen Research Group
    “Semi-Quantitative Design of Black Phosphorous Field-Effect Transistor Sensors for Heavy Metal Ion Detection in Aqueous Media,” J. B. Chang, H. H. Pu, S. A. Wells, K. Y. Shi, X. R. Guo, G. H. Zhou, X. Y. Sui, R. Ren, S. Mao, Y. T. Chen, M. C. Hersam, and J. H. Chen *. Molecular Systems Design & Engineering, 4, 491 - 502, 2019

  • Junhong Chen Research Group
    “Self-healing Liquid Metal Nanoparticles Encapsulated in Hollow Carbon Fibers as a Free-standing Anode for Lithium-ion Batteries,” J. H. Zhu, Y. P. Wu*, X. K. Huang, L. Huang, M. Y. Cao, G. Q. Song, X. R. Guo, X. Y. Sui, R. Ren, and J. H. Chen*. Nano Energy, 62, 883-889, 2019

  • Junhong Chen Research Group
    Resonance-Frequency Modulation for Rapid, Point-of-Care EbolaGlycoprotein Diagnosis with a Graphene-Based Field-Effect Biotransistor,” A. Maity, X. Y. Sui, B. Jing, K. J. Bottum, X. K. Huang, J. B. Chang, G. H. Zhou, G. H. Lu, and J. H. Chen*. Analytical Chemistry, 90(24), 14230-14238, 2018

    Overview

    (ACS Editors’ Choice)

  • Junhong Chen Research Group
    “Two-dimensional nanomaterial-based field-effect transistor for chemical and biological sensing,” S. Mao, J. B. Chang, H. H. Pu, G. H. Lu, Q. Y. He, H. Zhang, and J. H. Chen*. Chem. Soc. Rev. , 46, 6872-6904, 2017

  • Junhong Chen Research Group
    “Room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life,” Y. P. Wu, L. Huang, X. K. Huang, X. R. Guo, D. Liu, D. Zheng, X. L. Zhang, R. Ren, D. Y. Qu, and J. H. Chen*. Advanced Materials , 10, 1854-1861, 2017

  • Junhong Chen Research Group
    “Ultrasensitive Mercury Ion Detection Using DNA-functionalized Molybdenum Disulfide Nanosheet/Gold Nanoparticle Hybrid Field-Effect Transistor Device,” G. H. Zhou, J. B. Chang, K. Y. Shi, S. Mao, X. Y. Sui, S. M. Cui, and J. H. Chen*. ACS Sensors, 1(3), 295-302, 2016

  • Junhong Chen Research Group
    “Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation,” Y. Hou, Z. H. Wen, S. M. Cui, X. L. Feng*, and J. H. Chen*. Nano Letters, 16(4), 2268–2277, 2016

  • Junhong Chen Research Group
    “Ultrasensitive Sensitivity and Layer-dependent Sensing Performance of Phosphorene-based Gas Sensors,” S. M. Cui, H. H. Pu, S. A. Wells, Z. H. Wen, S. Mao, J. B. Chang, M. C. Hersam, and J. H. Chen*. Nature Communications, 6 (No. 3632), 2015

  • Junhong Chen Research Group
    “Controllable Green Synthesis of Hollow Si Anode for Long-cycle-life Lithium-ion Batteries,” X. K. Huang, J. Yang, S. Mao, J. B. Chang, P. B. Hallac, C. Fell, B. Metz, J. W. Jiang, P. T. Hurley, and J. H. Chen*. Advanced Materials, 26(25), 4326-4332, 2014

  • Junhong Chen Research Group
    Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a Lithium-Ion Battery Anode,” J. B. Chang, X. K. Huang, G. H. Zhou, S. M. Cui, P. B. Hallac, J. W. Jiang, P. T. Hurley, and J. H. Chen*. Advanced Materials, 26(5), 758-764, 2014

    Overview

    (Front Cover)

  • Junhong Chen Research Group
    “Crumpled Nitrogen-Doped Graphene Nanosheets with Ultrahigh Pore Volume for High-performance Supercapacitor,” 11. Z. H. Wen, X. C. Wang, S. Mao, Z. Bo, H. Kim, S. M. Cui, G. H. Lu, X. L. Feng*, and J. H. Chen*. Advanced Materials, 24(41), 5610-5616, 2012

  • Junhong Chen Research Group
    “Nitrogen-Enriched Core-Shell Structured Fe/Fe3C-C Nanorods as Advanced Catalysts for Oxygen Reduction Reaction,” Z. H. Wen, S. Q. Ci, F. Zhang, X. L. Feng, S. M. Cui, S. Mao, S. L. Luo, Z. He, and J. H. Chen*. Advanced Materials , 24(11), 1399-1404, 2012

  • Junhong Chen Research Group
    “Toward Practical Gas Sensing Using Highly Reduced Graphene Oxide: A New Signal Processing Method to Circumvent Run-to-Run and Device-to-Device Variations,” G. H. Lu, S. Park, K. H. Yu, R. S. Ruoff, L. E. Ocola, D. Rosenmann, and J. H. Chen*. ACS Nano, 5(2), 1154-1164, 2011

  • Junhong Chen Research Group
    “Specific Protein Detection using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticle-antibody Conjugates,” S. Mao, G. H. Lu, K. H. Yu, Z. Bo, and J. H. Chen*. Advanced Materials, 22 (32), 3521-3526, 2010

  • Junhong Chen Research Group
    Room-Temperature Gas Sensing through Electronic Transfer between Discrete Tin Oxide Nanocrystal and Multiwalled Carbon Nanotube,” G. H. Lu, L. E. Ocola, and J. H. Chen*. Advanced Materials, 21, 2487-2491, 2009

    Overview

    (Featured as Frontispiece)

  • de Pablo Group
    “Emergence of Radial Tree of Bend Stripes in Active Nematics,” Sokolov, Andrey; Mozaffari, Ali; Zhang, Rui; de Pablo, Juan; and Snezhko, Alexey. PHYSICAL REVIEW X, 9, 031014, 2019

  • de Pablo Group
    “Influence of Homopolymer Addition in Templated Assembly of Cylindrical Block Copolymers,” Doise, Jan; Bezik, Cody; Hori, Masafumi; et al. ACS NANO , 13, 4073-4082 , April 2019

  • Awschalom Group
    “Correlating dynamic strain and photoluminescenceof solid-state defects with stroboscopic x-raydiffraction microscopy,” S. J. Whiteley, F. J. Heremans, G. Wolfowicz, D. D. Awschalom, M. V. Holt. Nat. Commun., 10, 3386, 2019

  • Awschalom Group
    “Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide,” G. Wolfowicz, C. P. Anderson, S. J. Whiteley, D. D. Awschalom. Appl. Phys. Lett., 115, 043105, 2019

  • Awschalom Group
    “All-optical cryogenic thermometry based on nitrogen-vacancy centers in nanodiamonds,” M. Fukami, C. G. Yale, P. Andrich, X. Liu, F. J. Heremans, P. F. Nealey, D. D. Awschalom. Phys. Rev. Applied, 12, 014042, 2019

  • Skinner Group
    “OH-Stretch Raman Multivariate Curve Resolution Spectroscopy of HOD/H2O Mixtures,” Alexei A. Kananenka, Nicholas J. Hestand and J. L. Skinner. J. Phys. Chem. B, 123, 5139-5146, 2019

  • Rowan Group
    Preparation of cellulose nanofibers from Miscanthus x. Giganteus by ammonium persulfate oxidation,” Han Yang, Yefei Zhang, Ryo Kato, and Stuart J. Rowan. Carbohydrate Polymers, 212, 30-39, 2019

    Overview

    • Cellulose nanofibers (MxG-CNFA-CO2Hs) are isolated from Miscanthus x. Giganteus.
    • MxG-CNFA-CO2Hs are isolated via a new two-step chemical oxidation.
    • MxG-CNFA-CO2Hs have a high aspect ratio of 230 and length of ca. 880 ± 300 nm.
    • MxG-CNFA-CO2Hs exhibit better thermal stability than MxG cellulose nanocrystals.
    • MxG-CNFA-CO2Hs exhibit better mechanical reinforcement than MxG cellulose nanocrystals.
  • Rowan Group
    Effect of processing conditions on the mechanical properties of bio-inspired mechanical gradient nanocomposites,” Yefei Zhang, Alexandra N. Edelbrock, and Stuart J. Rowan. European Polymer Journal, 115, 107-114, 2019

    Overview

    • Squid beak inspired composite materials have been prepared with tunable wet modulus.
    • Photo-induced crosslinking of the nanofiller allows control of the wet modulus .
    • Processing conditions and film thickness impact the crosslinked modulus .
    • Mechanical contrast (E'stiff/E'soft) > 7 achieved by optimizing conditions.
  • de Pablo Group
    “Electronic structure at coarse-grained resolutions from supervised machine learning,” Nicholas E. Jackson, Alec S. Bowen, Lucas W. Antony, Michael A. Webb, Venkatram Vishwanath, Juan J. de Pablo. Science Advances, 5, eaav1190, 2019

Socialize With Us