Zhong Lab

Principal Investigator

Tian Zhong


1. Designer atomic qubits

Individually addressable, long-lived qubits with tailorable spin, optical and electrical properties are fundamental to building future quantum machines. We use an atom-up approach for atomic precision control of the creation, design, and manipulation of individual qubit in solids. We are particularly interested in wafer-scale manufacturing of atomic qubits that will enable next generation quantum systems.

Designer atomic qubits

2. Quantum network and interconnect

Quantum Internet is made of nodes where entanglement is generated, stored and processed, and quantum links for transferring entanglement between those nodes. We focuses on developing enabling technologies for efficient light-matter interface at individual quantum nodes and high-throughput quantum communication links. We collaborate with Argonne-Fermilab National Lab quantum testbed to develop telecom quantum nodes and photonic teleportation links. See the news here.

  • T. Zhong, et al. "Nanophotonic quantum memory with optically controlled retrieval" Science 357 1392-1395 (2017).

Quantum network and interconnect

3. Hybrid quantum systems for transduction  

We are exploring new material and device platforms in which spin qubits interact with variety of other quantum degrees of freedoms including superconducting circuits, optical photons, phonons and magnons. Such hybrid quantum systems could find key applications in quantum computing, quantum simulations and quantum sensing. The transduction modalities we study include:

  • Magneto-optic transduction
  • Acoustic-optic transduction
  • Electro-optic transduction

4. Quantum information and communications

We theoretically and experimentally investigate new paradigms of quantum entanglement generation and quantum information transfer in optical, microwave or hybrid systems. Current projects include quantum network simulator (collaboration with Dr. Martin Suchara, Dr. Raj Kettimuthu at Argonne), in-situ spin-photon entanglement generation (collaboration with Prof. Aash Clerk), microwave quantum state transfer, reconfigurable quantum wire and multi-node routing network. Some past related work include:

  • Z. Xie, T. Zhong, X. Xu, J. Liang, Y. Gong, J. Shapiro, F. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photonics 9, 536-542 (2015). News and media: Nature photonics; Phys.orgEurekAlertScienceDaily
  • T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon efficient high-dimensional quantum key distribution,” New J. Phys. 17, 022002 Fast Track Communications (2015). Video abstract

 5. Nanophotonics and integrated optics

  • Nanophotonics in insulating optical materials, complex oxide substrates.
  • Integrated nonlinear optics
  • Photonic MEMS and NEMS

Subkilohertz optical homogeneous linewidth and dephasing mechanisms in Er3+:Y2O3 ceramics

R. Fukumori, Y. Huang, J. Yang, H. Zhang and T. Zhong. Phys. Rev. B 101, 214202 (2020) Editors' Suggestion

Emerging rare-earth doped material platforms for quantum nanophotonics

T. Zhong and Ph. Goldner. Nanophotonics (2019).

Optical addressing of single rare-earth ions in a nanophotonic cavity

T. Zhong, et al. Phys. Rev. Lett. 121, 183603 (2018)

Nanophotonic quantum memory with optically controlled retrieval

T. Zhong, et al. Science 357, 1392-1395 (2017)

On-chip storage of broadband photonic qubits in a cavity-protected rare-earth ensemble

T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, Nature Commun. 8, 14107 (2017).

Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, Appl. Phys. Lett. 108, 011111 (2016).

High quality factor nanophotonic resonators in bulk rare-earth doped crystals

T. Zhong, J. Rochman, J. M. Kindem, and A. Faraon. Opt. Express 24, 536-544 (2016).

Non-destructive photon detection using a single rare earth ion coupled to a photonic cavity

C. O'Brien, T. Zhong, A.Faraon, and C. Simon, Phys. Rev. A. 94, 043807 (2016).

Photon efficient high-dimensional quantum key distribution

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, New J. Phys. 17, 022002 (2015).

View All Publications