Yang Lab

The Transient Quantum Matter Laboratory

We fabricate and characterize quantum materials with atomic thicknesses at femtosecond time scales. Utilizing the first-of-its-kind Multi-Resolution Spatial and Temporal Engineering Platform (MRSTEP), we employ molecular beam epitaxy to engineer quantum materials layer-by-layer, and characterize the electronic structures of these materials using equilibrium and non-equilibrium photoemission spectroscopy. The holistic probing of quantum materials in the domains of energy, momentum, space, and time allows us to gain deep understanding of macroscopic quantum phenomena, and connect the material properties to applications in spintronics, topotronics, and quantum information sciences. We are particularly interested in quantum phenomena emerging at material interfaces, such as interfacial superconductivity and various topological orders. We are also developing new instrumentation which will allow us to print reconfigurable quantum circuits at sub-micron scales.

See below for an overview of what we do, or explore the tabs in the menu for more information about us!



Principal Investigator

Shuolong Yang


Quantum matter under intense optical excitations can exhibit a range of exotic phenomena, such as metastable charge order and light-modulated superconductivity. In our laboratory, we aim to understand, manipulate, and utilize these transient phases of matter and investigate how we stabilize these exotic phases for longer period of time - eventually locking the transient matter in time. We combine atomic-scale thin film deposition - molecular beam epitaxy, and state-of-the-art time-domain electron spectroscopies. In particular, we use a revolutionary scheme - a cavity-enhanced optical excitation to stabilize transient phases for nanosecond or even longer time scale, eventually enabling applications of these quantum phenomena.

Mode-Selective Coupling of Coherent Phonons to the Bi2212 Electronic Band Structure

S.-L. Yang, J. A. Sobota, Y. He, D. Leuenberger, H. Soifer, H. Eisaki, P. S. Kirchmann, and Z.-X. Shen. Physical Review Letters 122, 176403 (2019).

Band-Resolved Imaging of Photocurrent in a Topological Insulator

H. Soifer, A. Gauthier, A. F. Kemper, C. R. Rotundu, S.-L. Yang, H. Xiong, D. Lu, M. Hashimoto, P. S. Kirchmann, J. A. Sobota, and Z.-X. Shen. Phys. Rev. Lett. 122, 167401

Revealing the Coulomb interaction strength in a cuprate superconductor

S.-L. Yang, J. A. Sobota, Y. He, Y. Wang, D. Leuenberger, H. Soifer, M. Hashimoto, D. H. Lu, H. Eisaki, B. Moritz, T. P. Devereaux, P. S. Kirchmann, and Z.-X. Shen. Phys. Rev. B 96, 245112

Femtosecond electron-phonon lock-in via photoemission and x-ray free-electron laser.

S. Gerber*, S.-L. Yang*, et al. Science 357, 71-75 (2017).

Inequivalence of Single-Particle and Population Lifetimes in a Cuprate Superconductor.

S.-L. Yang, J. A. Sobota, D. Leuenberger, Y. He, M. Hashimoto, D. H. Lu, H. Eisaki, P. S. Kirchmann, and Z.-X. Shen. Phys. Rev. Lett. 114, 247001

Thickness-Dependent Coherent Phonon Frequency in Ultrathin FeSe/SrTiO3 Films

Shuolong Yang, Jonathan A. Sobota, Dominik Leuenberger, Alexander F. Kemper, James J. Lee, Felix T. Schmitt, Wei Li, Rob G. Moore, Patrick S. Kirchmann, and Zhi-Xun Shen. Nano Letters 2015 15 (6), 4150-4154