de Pablo Group: Gurdaman Khaira

Graduate Student

de Pablo Group

Contact

  • Phone
    773.834.2912
  • Address

    Searle Laboratory 105

    5735 South Ellis Avenue

    Chicago, IL 60637

  • Email
    khaira at uchicago.edu

Research

The semiconductor industry is moving towards smaller circuit dimensions and feature sizes as guided by the Moore’s Law. Fabrication of circuits is traditionally done by photolithography, which uses light to create patterns on photo resists. However due to the diffraction of light, these techniques are problematic below ~20 nm feature size. Block copolymers self-assembly have potential to overcome this technical barrier and is a promising approach for fabrication of next generation of electronics circuits. Joining two or more chemically incompatible polymer chains forms block copolymers. Due to the repulsion between the polymer blocks they tend to phase separate at the nanoscale making well defined geometries like lines, dots etc. Changing the block copolymer composition and molecular weight as well as other properties can change the type and size of the domains.

In order to direct the defect free self-assembly of block copolymers over large wafer area, various guiding fields e.g chemical patterns, graphoepitaxy, solvent annealing etc. are employed. Gurdaman uses molecular simulations to study Directed Self Assembly (DSA) of block copolymers with various guiding fields. He is especially interested in the phase behavior of BCPs in presence of solvents of varying selectivity. He specializes in Monte Carlo simulations of coarse-grained polymer molecules. Using simulations, Gurdaman is trying to predict the optimum operating conditions (solvent type, vapor pressure etc.) for defect free assembly of BCPs in presence of solvents.

Biography

Khaira hails from Karnal, India. He graduated from the Birla Institute of Technology and Science, Pilani, India with a BE (Hons) in chemical engineering in Fall 2009. From August 2009 to June 2010, he worked at Mercedes Benz Research and Development India (MBRDI) as a Trainee Engineer. During his tenure at MBRDI, Gurdaman was part of Fuel Cell Research and Modeling team where he worked on the mathematical model development of Fuel Cell Humidifiers and Diesel Oxidation Catalysts. He then attended the University of Wisconsin–Madison in Fall 2010 and joined the research group of Prof. Juan de Pablo. He is expected to get his MS from UW-Madison in 2013 and become a PhD candidate at the Pritzker School of Molecular Engineering.

Socialize With Us